
The Social (Re)Production of Architecture

Author(s) Petrescu, Doina; Trogal, Kim

Imprint Taylor and Francis, 2017

ISBN 9781138859487, 9781138859494,
9781315717180, 9781317509233,
9781317509219

Permalink https://books.scholarsportal.info/uri/ebooks/
ebooks4/
taylorandfrancis4/2018-06-08/7/9781317509233

Downloaded from Scholars Portal Books on 2025-08-12
Téléchargé de Scholars Portal Books sur 2025-08-12

https://books.scholarsportal.info/uri/ebooks/ebooks4/taylorandfrancis4/2018-06-08/7/9781317509233

9 — SOFTWARE AND SPATIAL

PRACTICE: THE SOCIAL

(CO)PRODUCTION OF SOFTWARE

OR SOFTWARE FOR SOCIAL

(CO)PRODUCTION?

Phil Langley

The practice of architecture is conditioned by our technology, from
drawing boards and pencils through laptops and screens, to sensors
and networks, yet the mediating nature of this technology often
goes unacknowledged. Perhaps this relationship with the ‘tools of
our imagination’ (Piedmont-Palladino, 2007) was easier to ignore
in the past, but the need to engage with the effects of software on
our behaviours (and vice versa) should no longer be in doubt. While
the social nature of the scientific laboratory has been described
by sociologists of science such as Latour, and the significance of
non-human devices in the production of knowledge identified and
documented (Latour and Woolgar, 1986), the same is not true of
spatial design practice and its relationship with digital technology.
We have definitively moved beyond the false paradigm of ‘Computer
Aided Design’, in which skeumorphic1 software packages echoed the
functionality and reinforced the behaviour of the drawing board, but
where we have moved to is less certain.
 The current discourse around spatial design and digital technol-
ogy includes speculations on smart cities (and, by dubious extension,
smart citizens) and the rise of the so-called ‘internet of things’. Each
of these two strands focuses on a ‘near future’ vision of ubiquitous
computing in our urban environments that, in their most optimistic
form, suggest significant reductions in waste and energy use,
increased efficiency of transportation and communication infrastruc-
tures and even of democracy itself. Such optimism, should of course,
be treated with caution – not least as it poses the question, by whose
measure can these changes be described as ‘improvements’? But

1 The term skeumorphic relates to objects whose design has been principally derived from the
required functionality of an earlier object. A more general example of skeumorphism would be a
digital watch that displays on its screen the rotating hands of an analogue watch.

POLITICS130

software is already central to the design and documentation of build-
ings and cities. It is used for 3D, 4D (even 5D)2 modelling as well as
for complex simulations and analyses of virtual environments. At the
same time, it is becoming more important in the operation of those
environments once they have become material. Most significantly
here, the use of particular software, at certain stages of design and
operation is becoming more and more prescriptive, placing significant
demands on building designers and users.3 The practice of spatial
production is firmly situated in a new digital reality in which software
can no longer be seen as merely a tool.
 Software itself is always social, either actively so through the
interactions of developers, or more passively through the historic
layering of code which makes use of previously written code.4 I am
concerned specifically with using an idea of ‘social coding’ as a way
of challenging mainstream ideas of what software in spatial design
practice should be and what software should do. We need to develop
alternative approaches and explore new relationships between
ourselves and our technologies. I want to examine software itself as
a legitimate site of study – what is software actually made ‘of’? – and
in particular the culture of software (Fuller, 2003, 2008). What is the
social agency of software and how can this be used in both the social
(co)production of software and the development of software for social
(co)production? In order to answer this, I will use the ontological
framework of the ‘post-human’, and in particular Donna Haraway’s ap-
proach (Haraway, 2003), as a way of re-casting ourselves in relation
to our technologies. Additionally, I will look to the radical development
of ‘queer technology’ (Blas, 2006, 2008), as a design methodology

2 3D is, of course, model geometry and 4D is time simulations carried out using that geometry.
‘5D’ represents another layer of socio-economic data applied to the model and typically refers to
cost modelling.

3 I am writing this in the context of a significant change to mainstream architectural practice in
the UK, which is in the process of being implemented, the effect of which will be to determine the
means of digital production within architectural offices and, by extension, schools of architecture
throughout the country. In April 2016, the UK government implemented procurement standards
that require all projects funded by central government to be delivered using complex BIM (Building
Information Modelling) software that is currently only available as a closed, proprietary product.
This will determine the way in which much of the built environment will be designed, described
and documented. Leaving aside the detailed implications of prescribing the use of such software
specifically, which is worthy of a separate discussion, this enshrining of behaviour highlights precisely
the fallacy that software is merely a tool. This is software as a method of control.
See www.bimtaskgroup.org

4 For an example of ‘Social coding’, see the widely popular coding sharing platform ‘github’,
available at: https://github.com

http://www.bimtaskgroup.org
http://www.bimtaskgroup.org

PHIL LANGLEY 131

for software and technology, which encourages a ‘destabilisation’ of
the normative binaries and dichotomies. These two strands set an
alternative horizon for our engagements with technology and through
an example of my own practice, this chapter aims to explore these
implications.

DIGITAL COMPANIONS

In Haraway’s Cyborg Manifesto, the ontological notions of ‘human’
and ‘non-human’ are destabilised and the oppositional distinctions
between human (or animal) and machine instead become ‘leaky’
(Haraway, 1991). These cyborg formations imply blurriness at the
boundaries of categorisation and suggest a complex, co-evolutionary
process rather than a simple combinatory one. Haraway’s cyborg
is not created though mechanical couplings between entities from
closed categories, but rather the dynamic topological relationships
across blurred edges that create new, but inherently unstable (virtu-
ally, materially, temporarily) entities. Haraway develops her concept
of the cyborg into an idea of a ‘companion species’ that represents a
further ‘synthetic de-centralising’ of the natural and the artificial (Har-
away, 2003). The cyborg destabilises any notion of categorisation to
such an extent that ‘species’ can no longer be treated in isolation and
requires a particular understanding of co-evolution:

It is a mistake to see the alterations of dog’s bodies and minds
as biological and the changes in human bodies and lives, for
example, in the emergence of herding or agricultural societies as
cultural, and so not about co-evolution.
(Haraway, 2003: 31)

 For Haraway, the fate of the ‘dog’ and the ‘human’ have become
so intertwined that any hierarchy between the two is flawed and
the individuation of species becomes redundant. Furthermore, her
notion of ‘co-evolution’ requires a non-deterministic approach to
such relationships. Haraway’s cyborgs and companion species
outline a post-human condition in which we are placed in a dynamic
topological relationship with/as ‘companion species’ that we make
and remake, at the same time that they make and remake us. While
Haraway is specific about dogs in her manifesto, it seems to me to be
interesting, relevant and useful to extend this concept to an idea of a
‘digital companion species’. Such a digital companion would not be
an embedded ‘productised’ device or ‘assistant’, but instead would

POLITICS132

be an ever-changing presence, over which we can exert influence and
which, in turn, can influence us. A ‘digital companion species’, one
that follows a process of co-evolution, would be more reflective of the
variable agencies of software.

THE SOCIAL AGENCY OF SOFTWARE

Our machines are disturbingly lively and we ourselves
frighteningly inert.
(Haraway, 1991: 152)

Everything I do appears to be somehow mediated by digital technology
and not just the kind of cognitive expansion afforded by personal
networked devices such as smart phones. In my professional work, the
software I use or create does not merely act as a tool offering me a way
to carry out an already defined task in a more efficient way, it does not
provide a short cut to a pre-known destination. It also carries its own
logic that mediates my activity and in doing so exhibits its own agency.
At it most simplistic, the software can be seen as having ‘secondary
agency’, extending that of its creator into the realm of the user, so that
the creator is able to act as a ‘guiding hand’ to those that deploy the
software. This description is, at first glance, an attractive one. It allows
me, first, as the user of software, to critique the expectations of its use
in practice and, second, as a creator of software, implies that I can
‘influence’ the practice of others. But it isn’t that simple.
 The notion of the ‘secondary agency’ of software implies a
deterministic relationship between creator and user – or, as these
terms are modified in Mackenzie’s ontology of software, originator
and recipient (Mackenzie, 2006).5 Instead, the agency of software is
relational – it has a variable capacity to mesh with other actors within
new contexts (Mackenzie, 2006; Kitchin and Dodge, 2011). Kitchin
and Dodge use climate change modelling to illustrate this definition
of the agency of software. The complex simulations carried out to
predict the effect on the Earth’s atmosphere – a huge, collaborative
scientific undertaking – are distilled into single digit temperature
increases across the whole globe, that are deemed to be either
acceptable or not during political negotiations. In this case, the
simulation model – the software – is not carrying the agency of its
creators. Instead it is demonstrating its capacity to affect as part of a

5 The full ontology is as follows: 1. Code as index; 2. Originator; 3. Recipient; 4. Prototype.

PHIL LANGLEY 133

relational system.6 ‘The models analyse the world, the world responds
to the models’ (Kitchin and Dodge, 2011: 30).
 Mackenzie describes the edges of each part of his software on-
tology as fuzzy and states that what is important is that ‘the patterns
of relations that unfold in the neighbourhood of software are agential’
(Mackenzie, 2006: 17). That is to say, that each of the entities in the
ontology may act on any other at any given moment, depending on
circumstance. Furthermore, this describes software not as a stable
entity with its own discrete agency, but rather as something that only
ever exists as part of a larger formation that includes both its past
‘origins’ and its future ‘destinations’. Furthermore, software doesn’t
just appear, as Mackenzie states:

Someone or something codes it; there is an originator. Whether
the originator is a programmer, webmaster, corporation, software
engineer, team, hacker or scripter, and regardless of whether the
originator’s existence can be forgotten, sanctified or criminalized,
software originates somewhere.
(ibid.: 14)

 In this way, the software is not acting on something or someone,
instead its effects are co-produced between the fluid, interchanging
roles of ‘originator’ and ‘recipient’. I would go further in the definition
of ‘originator’ to include those whose use of proprietary software
becomes a tacit approval of its functionality and in some way perpet-
uates it. By this description, we are all originators of software and we
are all already involved in its (co)production.
 In her book, Close to the Machine, Ullman provides a first-
person account of the messy nature of software development and, by
extension, software. Her narrative, based on her own experiences as
a professional programmer, reveals the relational agency of software
through the social intra-actions of the ‘code’, ‘originators’, ‘receivers’
and ‘prototypes’, and she provides specific testimony on the social
nature of software. Ullman talks particularly about writing code, when
it is at its most unstable, and in doing so offers an alternative de-
scription of the ‘discipline’ of programming as a dynamic (rather than
procedural) process, that has no meaningful beginning or end. ‘It has

6 This illustration of the agency of software can also be seen at the scale of a building, where
complex environmental simulations carried out at the design stage to predict the internal conditions
are simplified to single letter performance ratings – A, B, C, etc. – determined by regulatory bodies,
denoting ‘overall’ success or failure.

POLITICS134

occurred to me that if people really knew how software got written
I’m not sure they’d give their money to a bank, or get on an airplane
again’7 (Ullman, 2013: 2).
 Code is always on the ‘verge of disappearance’ or collapse,
precisely because it is relational and co-evolving. It barely works and
without nurture and care, it will begin to deteriorate and break down.
Functionality is lost as the ‘ecosystem’ which it inhabits changes and
it becomes less and less intelligible as the code loses contact with
those who created and understood its unique idiosyncrasies.

 ‘QUEER’ TECHNOLOGY

The F/LOSS (Free/Libre Open Source Software) movement, in which
the term ‘free’ refers not to the cost but the users’ freedom to study,
modify and distribute the software, provides a broad framework for
other ways of producing software (and has, of course, influenced
many other discussions on copyright and ownership). This breadth
includes both the creation of free alternatives to closed, propriety
software8 as well as more radical propositions. Artist and writer Zach
Blas has made one such radical proposition which he describes as
Queer Technologies (Blas, 2006, 2008). Blas’s approach has de-
veloped from the wider discourse of queer theory, in which the term
‘queering’ is used not only in relation to groups such as gay, lesbian
and transgender but can also be understood as a performative act
against dominant perceptions and normative systems. For Blas, this
includes a design methodology that embraces ‘uselessness’ as a way
of challenging the ways in which software is considered to ‘work’
and is able to disrupt the normative binary by working across them.
This queering of software is achieved through questioning the very
function of functionality. As Blas says:

I think Queer Technologies wants to work in the interstices of
useful and useless, or to find new uses through the useless.
Importantly, this is not about deconstruction, it is about use,
about doing something, experimenting with new ways of doing
and making things happen.
(Interview with Zach Blas, n.d.)

7 I would also add ‘design a building’ to Ullman’s statement.

8 Examples include the image editing software GIMP, which offers an alternative to Adobe Photo-
shop (www.gimp.org/index.html) or Open Office in place of Microsoft Office (www.openoffice.org).

http://www.openoffice.org
http://www.gimp.org/index.html

PHIL LANGLEY 135

 Artist Željko Blace works with this approach and takes the queer
operating system as a paradigm for proposing other ways of doing
software that challenge the normative systems of productivity and
digital technology. Blace’s project for a Queer OS is an ongoing
exploration of speculative proposals and prototypes, carried out
through a series of collaborative events and workshops. Blace places
significance on the act of creative inquiry (rather than the technical
activity of writing code, for example) and thus provides a platform for
wider participation in the social, economic and political debates that
surround software.9

 The queering of software offers a strong design approach for
those working with, as well as on, software. Rather than seeking to
chase the supposed functionality of proprietary norms (something that
could be said of F/LOSS projects such as Open Office), queerness
allows for a more creative process of exploration that addresses the
social nature of software and goes further than the very general aims
of the F/LOSS movement and provides a specific software design
methodology.

‘SOCIAL’ MEDIA

While these approaches might help inform ‘small-scale’ technological
interventions such as coding on a personal computer, for instance,
how can they help us also engage with the kinds of networked com-
puting that have become so pervasive? More so than so-called ‘cloud’
storage systems for music or video files which are typically operated
‘on demand’ by the user, social media systems represent a perverted
kind of digital companion that is always on, always operating, always
connecting. Facebook, Twitter and other social media software
provide not only a platform for our own, directed communication, but
a means of aggregating content from others, sometimes our known
contacts but also from unsolicited sources, such as advertisers or
other ‘curated’ content.10 Its function as a direct communication

9 A 2014 workshop by Željko Blace on the Queer OS was held in Brussels in 2014, hosted
by arts-lab Constant, as part of their GenderBlending workshop http://constantvzw.org/site/-
GenderBlending,190-.html. The discussion during the workshop included general proposals to
change the skeumorphic features of normative operating systems such as files and folders as well as
specific queer ‘functionality’ such as discontinuous communication systems (i.e. receiving a message
via one account and replying via another), as a way of combating digital surveillance.

10 Social media corporations are also not averse to ‘curating’ this content in order to manipulate
users. Facebook was revealed to have managed the flow of positive and negative news stories to
users’ news feeds in order to control their emotions: www.theguardian.com/technology/2014/jun/29/
facebook-users-emotions-news-feeds

http://constantvzw.org/site/-GenderBlending
http://constantvzw.org/site/-GenderBlending
http://constantvzw.org/site/-GenderBlending
http://constantvzw.org/site/-GenderBlending

POLITICS136

platform has made social media an often reported feature of political
uprising and protest in many countries around the world (Castells,
2012; Gerbaudo, 2012). Manuel Castells claims that networks, which
for him are the dominant mode of organisation of our society, are
controlled by those who can program the networks and can switch
the networks. Here, to program is to set the goals of the network,
whereas to switch is to connect different networks and share those
goals. In his words:

If power is executed by programming and switching networks,
then counter-power, the deliberate attempt to change power
relationships, is enabled by reprogramming networks around
alternative interests and values and/or disrupting the dominant
switches while switching networks of resistance and social
change.
(Castells, 2012: 9)

 Castells advocates a direct challenge to the mechanisms of
power through the re-programming of its networks and disrupting
dominant switches, urging us to occupy the medium of communica-
tion. Castells even goes as far as to claim the Occupy movement was
being born digital, which suggests that characteristics of these protest
movements have been irrecoverably altered by the use of social media.
 These broad claims of the significance of social media in
the facilitation of collective action are, perhaps, overly simplistic
(Gerbaudo, 2012). Amidst the understandable optimism that many
protest movements have created (as well as the undoubted additional
‘functionality’ that global communication networks in general provide),
there is, at least for me, an accompanying concern at the suggestion
that the success of such movements may rest on the continued use
of a technology that lies so far outside of the influence or control –
commercially, politically or materially – of the protagonists.11 And, of
course, the widespread use of social media by those who wish to
challenge existing power structures has led to increased scrutiny of
digital communication by governments worldwide. The ability of global

11 One striking example that makes visible this power imbalance is a tweet sent during the ‘Green
Revolution’ in Iran, in 2009. ‘ALL internet and mobile networks are cut. We ask everyone in Tehran
to go onto their rooftops and shout ALAHO AKBAR in protest #IranElection’ https://twitter.com/
mousavi1388/status/2156978753. The message was sent by a supporter of the reformist politician
Houssein Mousavi who stood for election during the contested 2009 elections that precipitated the
uprising. The 140-character message encapsulates the fragility of our access and the impermanence
of these networks during what was, ultimately, an unsuccessful opposition movement.

https://twitter.com/mousavi1388/status/2156978753
https://twitter.com/mousavi1388/status/2156978753

PHIL LANGLEY 137

security services to spy on the mass of emails, calls, messages,
tweets, likes, favourites, etc. has brought into sharp focus questions
around our relationship with such platforms, the commercial interests
that supply them, and the government agencies that oversee them.
Nevertheless, there is something appealing in Castells’s optimism
of the potential for social media, and the direct link he makes to the
occupation of the material and the virtual: ‘They build their projects by
sharing their experiences. They subvert the practice of communication
as usual by occupying the medium and creating the message’
(Castells, 2012).

@SIMULATIONBOT

Using the conceptual framework of post-human de-centring of the
natural and synthetic, alongside the social agency of code and using
some of the aspects of queering technology, I would like to offer a
prototype for software for social (co)production, in terms of spatial
design practice. The @simulationBot project is an attempt to advance
an alternative strand of open source software for spatial design that
does not attempt to duplicate the functionality of existing, proprietary
platforms such as those used for complex geometry modelling or
data management. Instead, I am suggesting other types of interface
and interaction with design and software that develop, rather literally,
the idea of a (digital) companion species and in some way attempt to
‘occupy the medium’.
 The @simulationBot is a kind of ‘twitter bot’,12 a computer
program that automatically ‘tweets’ in response to certain stimuli. It
is a prototype project that appropriates three familiar characteristics
of the micro-blogging platform Twitter – ‘liveness’, ‘hashtagging’ and
‘geo-location’ – to propose an alternative idea of software for spatial
design (Figures 9.1 and 9.2).

12 See http://en.wikipedia.org/wiki/Twitterbot

POLITICS138

Figure 9.1 Photos by workshop participants

Figure 9.2 Design ‘hacks’ by workshop participants

 A twitter bot, which typically runs continuously on web servers,
can be used for various purposes, including spamming users.
Depending on their complexity, the twitter bot can respond in many
different ways but it typically is not based on any AI (artificial intelli-
gence) system and its behaviour is mostly ‘hard-coded’,13 for example,
bots may automatically re-tweet the post of another user. More
complex bots tweet about events on other platforms, for example,
@parliamentedits posts any changes to Wikipedia pages made from
an IP address inside the UK Parliament building.14 Regardless of the
specifics of the behaviour, the bots offer a novel way of ‘occupying
the medium’, working within the constraints for the platform as con-

13 Hard coding refers to the act of embedding data and/or data structures into a program, rather
than being able to generate it dynamically. For example, the file path to a user’s documents folder on
a personal computer would be hard-coded into the operating system. While it is not necessarily ‘bad’
(and is, in fact often necessary), hard coding can result in fixed software behaviours.

14 See https://twitter.com/parliamentedits, or https://gist.github.com/Jonty/
aabb42ab31d970dfb447, or www.theguardian.com/technology/2014/jul/30/how-to-find-out-when-
uk-politician-edits-wikipedia-page

https://gist.github.com/Jonty/aabb42ab31d970dfb447
https://gist.github.com/Jonty/aabb42ab31d970dfb447
https://gist.github.com/Jonty/aabb42ab31d970dfb447
https://gist.github.com/Jonty/aabb42ab31d970dfb447
https://twitter.com/parliamentedits

PHIL LANGLEY 139

trolled by their corporate owners, but also extending the functionality
of those platforms beyond that which its originators had intended. In
doing so, twitter bots are able to appropriate not only the software
but also the networked hardware that support them – data centres,
mobile and wireless communications and the personal computing
devices of Twitter users. The bots are still fragile – they can only
function while Twitter allows programmers access to their platform
through the API15 and as long as the platform itself is left switched
on – but it is still a more extensive ‘reprogramming’ of the network in
which not only the message is altered, but also the medium.
 The behaviour of my own digital companion – @simulationBot16
– was developed to employ not only the underlying functionality of
the Twitter platform, but was also designed in opposition to other
characteristics that have developed as part of the wider exploitation
of Twitter. The technology of social media platforms provides a very
simple method of ‘content aggregation’, but they do not, in them-
selves, provide a reliable format for the content itself because we as
users, don’t view ourselves as ‘content’ generators.
 It is common to see, both in academic research as well as in
contemporary news media, visualisations of Twitter data, sometimes
represented on a map, or aerial photograph. This is typically produced
from a static data set, ‘scraped’ from the posts of unsuspecting users
some time after an event has occurred. In this kind of arrangement,
the Twitter users are merely passive suppliers of data to an unknown
outside observer, rather than active participants in the process. As a
consequence of this imbalance, the data set itself is severely under-
mined. While there is no such thing as a ‘complete data set’, this kind
of data set is particularly flawed when represented in a generalised
way. At a population scale, it is unlikely that the demographics of
all Twitter account holders will ever be ‘representative’ and nor will
those tweeting at any given moment be representative either. And at
the scale of a single tweet, it requires active use of the geo-locative
functionality of each user’s device and rigorous use of the hashtag
mechanism to make a tweet in any way machine-readable.

15 The API, or the Application Programming Interface, is a set of protocols that determine how
publicly exposed software components can interact and how developers can use them to create
their own outcomes. The API is controlled by the principal ‘originators’ of a piece of software and the
depth of its functionality can vary widely. Furthermore, changes to the API can result in previously
functioning software becoming obsolete.

16 The twitter bot simBotBETA @simulationBot was created using www.processing.org and the
libraries www.twitter4j.org and http://unfoldingmaps.org/. Source code for @simulationBot can be
found at www.github.com/phiLangley

www.github.com/phiLangley
http://unfoldingmaps.org/
http://www.twitter4j.org
http://www.processing.org

POLITICS140

 The @simulationBot project is about altering our interaction with
the software of Twitter in order to create an alternative ‘social’ assem-
bly and was created using these fundamental principles:

− The ‘digital companion’ is not merely an outsider and should be
 an active member of the social network.
− The ‘digital companion’ must be, in some way, present and
 visible, rather than remote.
− The data has to be made actively and not collected passively.
− The data must be re-presented in real time.

 The @simulationBot was developed for, and during, a series of
workshops intended to question the nature of software and code
in spatial design practice.17 In the final experiment participants
were asked to explore the city centre of Sheffield and propose
‘hacks’ – which are a sort of ‘micro’ design intervention – which
they would tweet about, using photos and text, as well as hashtags
and their GPS location (Figure 9.2). The tweets were collated in
real time by the @simulationBot, which produced a live map of data,
indicating the individual and group activity that was projected at the
event venue as well as re-tweeted to the dispersed participants. So,
the @simulationBot acts as our digital agent within the system. As
members of the group send tweets from the locations across the city,
they receive notification from @simulationBot about the activities of
other members of the group. The map of the tweets was not only built
in real time, but also shared in real time, as snapshots were shared in
the communications of the @simulationBot (Figure 9.3).
 While operating in this way the @simulationBot is no longer only
exploiting the infrastructure of social media – GPS-enabled devices,
sending and storing text and media across communication networks
– but rather is beginning to modify it. The usual method of directed
interface from the service provider – targeted ads, curated content,
and so on – is replaced with a ‘digital companion’ participating in the
activity as well as enabling it.

17 The simBot workshop was part of ‘The Whole School Event – Designs on our City’ which
took place in February 2014, and was organised by the Sheffield School of Architecture (SSoA),
University of Sheffield. The workshop, entitled ‘open data in the city’ was carried out with Dr Mark
Meagher, of SSoA, and included student participants from across SSoA. See https://architecture.
dept.shef.ac.uk/ssoa_news/?p=1812

PHIL LANGLEY 141

Figure 9.3 Maps created by @simulationBot and Phil Langley

SOFTWARE AND SPATIAL PRACTICE

It is clear to me that, as architects, our relationship with our tech-
nology is central to our practice. The unstable agencies of software
show that we cannot consider it a neutral tool in the production of
space. The behaviour of software affects the process of design and,
similarly, software should be affected by the type of design process
that we want to adopt. Software cannot simply be deployed in order
to realise a designer’s wishes. Instead, to work with software and
technology should be a reflexive practice in which the relations
between designer and the software are made and remade. The
idea of social (co)production of space is not yet part of mainstream
architectural practice and it seems unlikely to me that software that
is developed for that mainstream would be wholly applicable to
this other approach. The @simulationBot is a very simple attempt
to propose other types of software that may be (co)produced for
spatial design. We need alternatives that are not just different in
terms of access – ‘open’ rather than ‘closed’ – but are distinctive in
functionality. The very notion of functionality must be re-examined and
the queering of technology offers a convincing design methodology
for both understanding and critiquing existing software and proposing
others. Code is an unstable material, from which sturdy algorithms
and software emerge. While stability is seen as a prerequisite for
software to be successful, perhaps we shouldn’t aspire to it. The
problematic hardware and software assemblies of networked commu-
nication technology, for instance, represent a level of stability that we
cannot realistically hope to replicate, so perhaps we shouldn’t even
try. Rather, it is in the messiness of code where we can co-evolve
with our own digital companion species, species which have agency,
which have behaviour, which ‘affect’ and are ‘affected’.

POLITICS142

REFERENCES

Blas, Z. (2006) What is Queer
Technology? Available at: www.
zachblas.info/publications_
materials/whatisqueer
technology_zachblas_2006.pdf
 (2008) Gay Bombs:
User’s Manual, Queer Tech-
nologies. Available at: http://
www.zachblas.info/wp-content/
uploads/2016/03/GB_us-
ers-manual_web-version.pdf
 (n.d.) Interview with Zach
Blas. Available at: http://rhizome.
org/editorial/2010/aug/18/inter-
view-with-zach-blas/ (accessed
28 February 2015).

Castells, M. (2012) Networks
of Outrage and Hope: Social
Movements in the Internet Age,
Cambridge: Polity Press.

Fuller, M. (2003) Behind the Blip:
Essays on the Culture of Soft-
ware, Brooklyn, NY: Autonomedia.
 (2008) Software Studies:
A Lexicon, Cambridge, MA:
MIT Press.

Gerbaudo, P. (2012) Tweets and
the Streets: Social Media and
Contemporary Activism, London:
Pluto Press.

Haraway, D. (1991) Simians,
Cyborgs and Women: The
Reinvention of Nature, London:
Free Association Books.

 (2003) The Companion
Species Manifesto: Dogs, People
and Significant Otherness, 2nd
edn, Chicago: University of
Chicago Press.

Kitchin, R. and Dodge, M. (2011)
Code/Space Software and
Everyday Life, Cambridge, MA:
MIT Press. Available at: http://
site.ebrary.com/id/10479192

Latour, B. and Woolgar, S.
(1986) Laboratory Life: The
Construction of Scientific Facts,
ed. J. Salk, Princeton, NJ: Prince-
ton University Press.

Mackenzie, A. (2006) Cutting
Code: Software and Sociality,
New York: Peter Lang.

Piedmont-Palladino, S. (2007)
Tools of the Imagination:
Drawing Tools and Technologies
from the Eighteenth Century to
the Present, New York: Princeton
Architectural Press.

Ullman, E. (2013) Close to the
Machine: Technophilia and its
Discontents, London: Pushkin
Press.

http://site.ebrary.com/id/10479192
http://site.ebrary.com/id/10479192
http://rhizome.org/editorial/2010/aug/18/inter�view-with-zach-blas/
http://rhizome.org/editorial/2010/aug/18/inter�view-with-zach-blas/
http://rhizome.org/editorial/2010/aug/18/inter�view-with-zach-blas/
http://www.zachblas.info/wp-content/uploads/2016/03/GB_us�ers-manual_web-version.pdf
http://www.zachblas.info/wp-content/uploads/2016/03/GB_us�ers-manual_web-version.pdf
http://www.zachblas.info/wp-content/uploads/2016/03/GB_us�ers-manual_web-version.pdf
http://www.zachblas.info/wp-content/uploads/2016/03/GB_us�ers-manual_web-version.pdf
http://www.zachblas.info/publications_materials/whatisqueertechnology_zachblas_2006.pdf
http://www.zachblas.info/publications_materials/whatisqueertechnology_zachblas_2006.pdf
http://www.zachblas.info/publications_materials/whatisqueertechnology_zachblas_2006.pdf
http://www.zachblas.info/publications_materials/whatisqueertechnology_zachblas_2006.pdf

