
Transcoding Sexuality: Computational Performativity and
Queer Code Practices

Gerald Stephen Jackson

QED: A Journal in GLBTQ Worldmaking, Volume 4, Number 2, Summer
2017, pp. 1-25 (Article)

Published by Michigan State University Press

For additional information about this article
https://muse.jhu.edu/article/668587

[142.150.190.39] Project MUSE (2025-08-12 15:49 GMT) University of Toronto Library

1

)))
Transcoding Sexuality: Computational
Performativity and Queer Code Practices
Gerald Stephen Jackson

Copyright © 2017 Michigan State University. Gerald Stephen Jackson, “Transcoding Sexuality: Compu-
tational Performativity and Queer Code Practices,” QED: A Journal in GLBTQ Worldmaking 4.2 (2017):
1–25. ISSN 2327-1574. All rights reserved.

abstract
Scholarship in the history of computer programming has demonstrated how the
contributions of engineers have been erased due to gendered assumptions of labor
and science. I argue that such erasure parallels a gendered epistemology of mastery
embedded in computer programming itself. Towards this, I extrapolate and refine
the concept of “computational performativity,” drawing from media theorists
Katherine Hayles and Wendy Chun, to put forth a gender performativity of code.
Looking at two queer code art objects—Zach Blas’s transCoder and Julie Levin
Russo’s Slash Goggles—as well as production code in the C programming language,
I argue for a critical move away from representation as the seat of meaning in code,
and towards a performative understanding of gendered code through “contexts of
complexity.” Focusing on complexity and interrelationships allows scholars to read
code as gendered, and to furthermore leverage such reading to propose and enact
queer “failures” in code as rhetorical critiques of software.

)))   Introduction

Digital media is not gender neutral. Although theorists in feminist technol-
ogy and queer studies have illuminated the social construction of technological
objects, many arenas of software development still posit a gender-blind meritoc-
racy of progress and achievement. The historical and epistemological assumptions

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

2  (  Gerald Stephen Jackson

of the field contradict such utopian visions. As Wendy Chun writes, the original
computers were in fact women, literally computing problems given to them by
(typically male) mathematicians and scientists, plugging away on 1940s state-of-the-
art military-grade hardware.1 This man-woman-machine relationship is the pre-
cursor to the development of software, and as women were marginalized from
the burgeoning field of “programming,” so too was digital media bracketed as
prior to or outside gender, effectively moving it from the clerical realm of hard-
ware manipulation into the creative and intellectual realm of computer science.2
Because women, in many ways, were software before there was software, scholars
can see digital media as an inherently gendered entity and develop methods to
study technology as a productive and performative aspect of cultural episte-
mologies. Not only does code represent the instructions that eventually come
together to form software, but it also expresses a set of knowledge-producing
practices that join programmers and users through a plethora of technological
enterprises.

In this article, I argue that one such epistemology, that of “mastery,” exem-
plifies the performative and gendered nature of software and code practices. I
situate programming as a profession of software production, the result of perfor-
mative norms of humanistic mastery of discourse and technology. Towards this,
I extrapolate and refine the concept of “computational performativity,” drawing
from media theorists Katherine Hayles and Wendy Chun, to put forth that
computational performativity is gender performativity. Rather than see code as
a representation of meaning through the interpretation of texts or processes, I
utilize several code artifacts to show that software is more accurately examined as
an ecology of development practices that structure how certain norms circulate
through software. These practices can be traced through the distinction between
code as a text (source code, algorithms) and code as software—as made from
the relationships of multiple, often hidden processes. Inspired by Judith But-
ler’s assertion that “the linguistic domain over which the subject has no control
becomes the condition of possibility for whatever domain of control is exercised
by the speaking subject,” I trace how computational performativity functions as
a technological production of structural masculinity through software.3 Moving
away from representation as the seat of meaning in code, I see the reading of
code as a formal tool to discuss how gender works through what I call “contexts
of complexity.” Complexity, in software engineering, is a constant problem and
mechanism that requires that programmers strategically hide complexity to pro-
duce further, complex software. To read a piece of code as hidden and hiding,
always embedded in contexts beyond its immediate application, is essential to
understanding how assumptions of discourse propagate through that hiding and
production.

Transcoding Sexuality )  3

To illustrate my vision of computational performativity, I examine two
related digital artifacts: Julie Levin Russo’s gender-challenging Battlestar Galac-
tica fan fiction Slash Goggles and Zach Blas’s digital queer art project transCoder.
A fictional “pseudocode,” Slash Goggles is an algorithm meant to bring together
elements of computation, fiction, and gender critique. Slash Goggles mobilizes
computer programming structures and technical communication to present a
theoretical piece of software that operationalizes sexual identification through
characters in the show. The programming syntax used as the fictional “language”
of Slash Goggles is obtained from transCoder, a digital art project that synthesizes
software development techniques and queer gender theory from thinkers such as
Butler, Luce Irigaray, Michel Foucault, and Donna Haraway. Using transCoder
as a template for Slash Goggles, Russo develops her project within a set of com-
putational norms and fictional contexts of complexity that perform traditional
software engineering practices. As a consequence, Slash Goggles implicates her
critique and her fan fiction within a larger critique of digital circulation and
sexual identity.

The move from a template library of code in transCoder to a realized proce-
dural critique in Slash Goggles demonstrates the performative move of software
in iterating social and computational norms, and the potential for gender norms
to likewise iterate through digital media. In making this argument, I proceed in
three parts. First, I define the concept of computational performativity through
transCoder and Slash Goggles. I show that the former structures the latter through
what Hayles describes as the work of “revealing and concealing” in software, or
the ways in which the “‘brute’ lower levels” of computation are concealed to
engender higher-level order through a mechanism of “abstraction.”4 Second, I
describe how the relationship between abstraction and complexity in code is a
performative aspect of the circulation of a historically masculinized epistemol-
ogy of mastery, in which the subject position articulated by programming as a
practice rests on assumptions of expertise, individuality, and command. Third,
I demonstrate how their queer critiques of code open the way for a rhetorical
approach of computational performativity by way of the discursive potential of
what J. Jack Halberstam defines as “queer failure” in code. Abstraction as perfor-
mativity and queer failure allow us to recognize code as a product and produc-
tion of a masculine epistemology, to critique that epistemology, and recognize
the productive aspects of that epistemology.

4  (  Gerald Stephen Jackson

)))   Computational Performativity and Contexts of
Complexity

Describing code as “performative” inevitably asks that we think of code as a kind
of language, which for some is a contentious analogy to make. Because code is
not “natural” (i.e., human) language, some overwhelmingly see that it is imme-
diately constrained by its determined, machinic limitations as compared to natu-
ral language. Hayles argues that we cannot describe code in the same way as a
natural language because code has a more rigorously defined referent in the form
of hardware and execution structures, of esoteric commands, binary digits, code
libraries, and electrical pulses—referents that have no antecedents in natural
language.5 For Hayles, the “effects” produced by computer code invoke, through
the execution of code as part of software, an unintelligible interlocutor in the
form of the machine. Perhaps because of this, scholars often productively turn to
the ways in which code acts as a form of writing grounded in recognizable writ-
ing practices. Robert Cummings, for example, argues that the purposing of code
as a text allows us to better understand how we write for human audiences, that
there is a communicative relationship between machine structures and human
writing. The machinic elements of this equation (the programming language,
the software) are—even though they structure the entire activity—peripheral
to the actual activity of writing the code (which, ideally, adheres to relatively
understandable paradigms of rhetoric, composition, and pedagogy).6 Likewise,
code studies scholar Mark Marino suggests that we can “read” code (or pseudo-
code) like a poem, “a text, a sign system with its own rhetoric, as verbal commu-
nication that possesses significance in excess of its functional” utility.7 This can
be a strict representational look at the code (what does it say), or, as Ian Bogost
or Kevin Brock suggest, we can look at the rhetoric of an algorithm through the
procedure outlined by the code or expressed by the software (what does it do,
or what does it ask the user to do).8 Textual and procedural analyses therefore
situate procedure, algorithm, or code qua text as writing, distinct from other
labor practices in software engineering involved with creation of hardware or
software. Writing would no doubt be part of such professional practices, and
perhaps even more noticeably so when focusing on individuals writing code, but
there is always some line of intelligibility that comes with describing software or
computation itself as rhetorical.

Coding as a practice does not necessarily map onto a human-centric practice
of writing, primarily because the responsibility of its interpretation also includes
a machine: the computer. We cannot reduce code to textual interpretation,
which in and of itself is not a world-shaking proposition considering that many

Transcoding Sexuality )  5

might argue we cannot reduce text to some paradigm of textual interpreta-
tion. However, it does suggest that, like language, we can also consider code
as something beyond its representational force or content, whether consid-
ered through its text or its procedure. That is, how can we think of what code
“does” as an object with a history, emerging from cultural contexts that rely
just as much on software engineering techniques as they do cultural inter-
pretation? I suggest that code is performative in the sense that I read code
less for how it affects an audience, and more about what Butler describes as
“the reiterative and citational practices by which discourse produces the effect
that it names.”9 Following this, reading a piece of code as a text implicates
more than the rhetorical force of the code itself, but the technocultural net-
works of code libraries and engineering practices that produces the potential
meanings already situated in cultural categories of race, class, gender, and
nationality.

Software is not “an algorithm” or code, but a network of code libraries
producing contexts of complexity for execution that cannot be limited by an
“audience–interlocutor” model, nor reduced to a mediation within such a model.
In the examples of Slash Goggles and transCoder, computational performativity
is demonstrated through the artwork of queer digital activists’ representations of
code and software, and an investigation shows how computational performativ-
ity can produce gendered effects. Because Hayles qualifies the notion that code
is a language by implicating the computer itself as an audience, she qualifies
code as a mediation of intention and logic between humans and machines. She
accordingly resists a Derridean notion of language’s infinite citationality and
iterability—because code is tied to a knowable context (that of execution, of the
machine), at some point “signifiers must point to signifieds,” and commands
must work within a tight constraint of “correctness” to execute.10 Derrida’s
description of language as always a citation of previous utterances—utterances
that iterate outside of the presences of their author—ends logically at the arti-
fice of hardware. Therefore, the writing of code is not directly connected to
the execution of that code through that act of writing: there are intermediary
steps during the computational process that programmers and writers do not
engage, which seemingly ends the endless play of signification present in natural
language.

Within this discussion of code and execution, note that when Cummings,
Marino, and Hayles refer to “code,” they mean “source” code. Source code is
the code that programmers write, modify, and compile as part of the software
development process. This differs from machine code, which is expressed in
binary or hexadecimal numerical form and corresponds directly with the pro-
cesses occurring in computer processing and memory. Nontechnical audiences

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

6  (  Gerald Stephen Jackson

are familiar with source code through representations of programming in pop-
ular media, with focused hackers, spies, or scientists typing away while lines of
mathematical-looking statements scroll down a screen. Although esoteric and
difficult to understand, it is relatively translatable because source code more
closely resembles a natural language. The simplest example of executable source
code for most programming languages is the “Hello World” program, often used
as a beginning lesson in programming textbooks and tutorials. “Hello World” in
the C programming language looks like the following:

#include <stdio.h>
int main(){

printf(“hello, world\n”);
return 0;

}

Although the meaning of the commands evades non-programmers, it takes lit-
tle effort to translate: within a main function (int main) it prints (printf) the
sentence “Hello World” plus a line break (“\n”) to the screen. This is, for all
intents and purposes, a complete program. Likewise, Slash Goggles (Figure 1) is a
representation of source code.

This code, although dense and probably confusing to most, still provides a
foundation for “reading” some of the intended meaning of the author. Unlike
“Hello World,” Slash Goggles is “pseudocode,” or nonexecutable text written as
code in order to map the logic of an algorithm. Pseudocode represents a sort of
conceptual, nonexecutable “draft” version of a future piece of code.

Slash Goggles

Russo posted Slash Goggles to her Livejournal blog The Archive2, described
by Russo as “experimental fan works for Battlestar Galactica season 4 and
beyond,”11 The blog organizes its contents around a shared interest in Galactica
and the identity-challenging themes present in the show. Slash Goggles addresses
Galactica’s themes directly through the conceit of the Cylon—human-like
cyborgs who experience emotions like pain, fear, and sexual desire, and who
inevitably model their identities upon (and serve as model for) their human
counterparts. The blog post (“the Slash Goggles algorithm”) contains the Slash
Goggles code, a description of that code, and a series of images from the series,
photoshopped with thought bubbles that reflect what the outcome of the algo-
rithm is. As such, Russo’s fan fiction more closely resembles a documentation

Transcoding Sexuality )  7

Figure 1

8  (  Gerald Stephen Jackson

page for software than a fictional narrative, including descriptions of how the
code works and an implementation guide. This documentation describes Slash
Goggles as a program that “establishes, based on visual data, the variant sexual
preferences of human subjects,” a program that helps Cylons understand human
sexual orientation and “improve HCI” (human-computer interaction).12

The fictional language Slash Goggles portrays (Cylon Core Language—CyCL)
functionally and textually represents scripting languages like PHP or JavaScript.
It starts with (1) a function declaration (“function slash_goggles($desire)”) that
signals the beginning of the algorithm by way of naming it. Functions are, much
like basic algebra, names that “stand in” for larger computational formulas that
involve variables. In this case, “slash_goggles” names the function, and defines
what variable data it takes as input ($desire). Words beginning with a dollar
sign (‘$’) designate variables. Like math problems, variables take a value such as a
number or a string of words assigned by the program to do work with or on that
value. Following that, a series of subprocedures accomplish component oper-
ations: checking activation status (2), defining subjects (3), verifying data (4),
parsing that data (5), and using that data to computer some sort of gender iden-
tification (6). Slash Goggles takes as input the variable “$desire,” which immedi-
ately implicates some sort of value that quantifies or represents input that has
been assigned to represent “desire” by some other program. Then, in a series
of smaller subprocedures, the algorithm accomplishes a set of tasks seemingly
integral to the identification of sexuality. The “exactness” of code in expressing
a procedure through concrete statements and quantifiable results demands a
specificity that Slash Goggles both leans upon for its rhetorical effectiveness and,
at the same time distorts, through linguistic ambiguity.

Slash Goggles critiques and destabilizes both gender and computation as purely
mechanical or determined categories, and questions the distinction between the
two by staging sexual identification as a procedure. Because the code represents a
procedure, Russo also includes some fictional “output” of the code. Images from
the show featuring human characters, seemingly viewed through the point of
view of a Cylon, are given thought bubbles that articulate that character’s sexual
desires, frustrations, and complexities. Figures 2 and 3 represent the results
of the algorithm as the Cylon characters (in first-person point of view) gaze
upon the human characters.

Within the framework of her fan fiction, Russo suggests that this algorithm is
similar to human recognition of sexuality (“gaydar”), and explains that Slash Gog-
gles represents the procedural work of ascertaining a shifting, fluid sexuality that is
drawn from, but not determined by, social dynamics and negotiated subjectivities.

The Slash Goggles operation/algorithm describes the negotiation of sexual
identification. Here, we can start to look for textual clues to interpret what Slash

Transcoding Sexuality )  9

Goggles attempts to express as a critique, because the ambiguity between the
language of the code and its use as code helps constructs the potential meanings
of Slash Goggles. Readers unfamiliar with code may still pick up on references
to sexuality, gender, and queer epistemologies in phrases like “theCloset,” “bug-
gery()” and references to the body, identity, and gender. Those familiar with
coding will also notice the programming structures that meaningfully situate

Figure 2

Figure 3

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

10  (  Gerald Stephen Jackson

those references. For example, in “defining subjects” (Section 3 in Figure 1), Slash
Goggles iterates over each element in $humanform (which, as suggested by the
code, contains at least one, if not more, discrete elements) and assigns a value
based on visual data ascribed to a variable “$body.”

The rest of the algorithm follows suit, and calls to functions that reference
“theCloset,” destabilization, and performance suggest a similar reliance on con-
textual, yet open and circulating, interpretations of subjects and their sexual-
ities. As Eve Sedgwick argues, the “closet” is “a performance initiated as such
by the speech act of silence—not a particular silence, but a silence that accrues
particularity by fits and starts, in relation to the discourse that surrounds and
differentially constitutes it.”13 The use of “theCloset” as a code term suggests a
self-orientation (is the Cylon subject “in” the closet? Can the Cylon perform
or express desire? How does this orient the Cylon towards the subject of their
view?) and a cultural orientation constructed by the ability to speak or the neces-
sity of remaining silent and/or hidden. More directly, “theCloset” plays a part in
construction of sexual knowledge for the Cylon—if “theCloset” is “null,” mean-
ing without value, then the algorithm begins openly constructing data based
on sexual traits gained from interpretation of the “$body.” The computation of
a sexual identification of the other is already based on the viewer’s interpretation
of the other, which is inherently incomplete and limited, but informed by the
available (and, conversely, the unavailable) information.

The algorithm queers sexual identity and identification as well as computa-
tion, both in its language and its formal structure. The wording of commands
as recognizable ideas in gender and queer theory are mobilized within pro-
grammatic constructs like conditional statements, iterating loops, and variables
to express a structural critique of sexual identification. By taking a seemingly
determined media format (computer code) and using it to demonstrate an
ambiguous process, Russo suggests that it simply is not enough to say “sexual
identification is ambiguous” or that “gender is dynamic and interpreted,” but
instead calls for the reader to walk through the difficulty of operationalizing
such a task. As Erin Davis writes, “identification occurs within a social regime
of normative expectations and guidelines that shape everyone’s possibilities for
self-representation,” and that gender identity is not “static, but it is also not
unbounded.”14 In this case, identification is bound by structure and syntax. The
only significance between this binding structure (software) and language more
broadly is that we have determined a computational, performative context as
artificial and knowable. And yet, potential identification is implicated in log-
ical structures and interconnected activities not entirely expressible through
procedural understanding. Values, epistemologies, foundations of activity, and
knowledge are all continually (re)expressed in these code relationships, even

Transcoding Sexuality )  11

as they are hidden. The expression and critique of sexual identification is linked,
through the use of the algorithm and code as medium for such expression, to
a resistance to any notion of an algorithmic reduction of sexual identification
as a process and to the reduction of a process as something rote or determined.
The underlying performativity connects these approaches as critiques of code
and sexual identification, with shared concepts of determination and agency.
The connection between these two performative moves is linked through the
underlying performative nature of the computational system, and in particular
through the gendered nature of that system.

TransCoder and Abstraction

Much as Russo situates identity and identification as a procedure, the under-
lying work of code implies a realm of computation and execution in excess of
a code’s meaning. We must therefore situate code as a performative structure
outside of strict interpretations of author-intended meaning. Taking source code
as the origin or center of meaning, according to Wendy Chun, erases the dis-
tinction between code and execution, conflating the meaning of that code with
its effects in computer execution.15 This represents how, according to Chun, how
source code is “fetishized” by scholars as the seat of meaning.16 To fetishize is to
erroneously assume that the full meaning of the code is exposed as the source is
exposed. Performative code, however, places something like “Hello World” or
Slash Goggles outside its author as the seat of meaning. As a given piece of soft-
ware is most commonly tens of thousands (if not millions) of lines of code, the
functioning of that software is predicated not simply on a given algorithm, but
on the relationships between algorithms in different code libraries and how user
input circulates between their execution. If execution and code are separate and
under erasure, as Chun argues, meaning cannot be invested strictly in the source
code, but within the erasure of the underlying execution of that code—which
includes the hiding of hardware and the hiding of underlying code libraries and
algorithms. The technique of hiding execution is known in computer science
as “abstraction,” a method where complex computational processes are hidden
or “abstracted” from users behind simpler interfaces to facilitate easier, more
streamlined programming.

Abstraction is the mechanism of computational performativity, because
this erasure allows the development of complex software from already existing
complexity. A good example of this is the software development kit (SDK). An
SDK provides programmers with code interfaces that allow them to produce
software for complex platforms. A good example of this is the development

12  (  Gerald Stephen Jackson

of software for mobile devices like smart phones. Android and Apple iPhones
are incredibly complex machines, and the code necessary to do even the sim-
plest task (e.g., draw a window to a screen, or connect to the Internet) would
be monstrous if each app on that platform required programmers to do each
from scratch for every program. Therefore, these platforms have dedicated
SDKs, written in a given programming language (Java for Android, Objective
C for iPhone) that hides the complexity of hardware and software interaction so
that better, more complex apps can be built faster and more reliably. The code
required to have an Android phone draw a window to the monitor requires
mathematical computations to determine size and orientation, contents, and the
very context from which the window comes into being and presents itself to the
user (e.g., where to store this in memory, how to toggle between user contexts).
When every task requires hundreds, if not thousands, of procedures, suddenly a
simple program becomes almost unthinkably complex. However, with the SDK,
the command to create a window and start an app is reduced to about a dozen
lines of code, none of which require an app developer to manually manage hard-
ware, data resources, or the operating system. Thus, an SDK is an abstraction
of the underlying complexity of the phone that allows for the quick and reliable
deployment of software for that phone.

Abstraction points us towards the performative because it incorporates reg-
ulatory practices outside of the code that we write, and these regulatory prac-
tices often consist of assumptions about how people work and communicate.
In “The Performativity of Code,” Adrian Mackenzie argues that software can
represent “a form of collective agency in the process of constituting itself.”17
Using the operating system Linux as his example, Mackenzie writes that the
“ongoing constitution is performative with respect to the efficacy of Linux as a
technical object and with respect to the fabrication of Linux as a cultural iden-
tity.”18 For Mackenzie, Linux regulates its own constitution through a series of
norms of practices that are within its own code, which then circulate through
the social body of developers that utilize it. This echoes Butler’s argument that
performativity is a production of subjectivity and sex through the iterative power
of discourse.19 That is, it is not an act or performance accomplished by some
actor, but the continued (re)production of norms, rules, logics, a reproduction
that becomes naturalized or seemingly necessary as it materializes and remate-
rializes itself. Software “would have to be understood not just in terms of the
meanings ascribed to it, or in terms of its effects on the movements of data and
information in communication networks. Rather, it would be an objectification
of a linguistic praxis.”20 Thus, software must contain within itself the logic of its
own reproduction. However, to stay close to Butler rather than, say, Derrida,

Transcoding Sexuality )  13

I turn to an example of abstraction that retains Butler’s investment in gender:
Blas’s transCoder.

Burned and distributed on CD-ROMS or as packaged files available for down-
load through Zach Blas’s Queer Technologies website, the transCoder package
appears a simple collection of unordered .txt files with names like “about.txt,”
“libraries.txt,” and “compiler.txt.” transCoder, like Slash Goggles, is pseudo code,
but whereas Slash Goggles mimics an algorithm, transCoder more closely resem-
bles an SDK. Marino describes transCoder as a “provocative kit” that “uploads
counter-cultural ontologies (or anti-ontologies) into the normalized logic of soft-
ware. He is transcoding theory into a programming language.”21 The accuracy
and importance of this description is evident in that, unlike the source code of
Slash Goggles, what we see here is not an algorithm. In fact, without some prior
knowledge of how code functions, we might not have any clue what we are look-
ing at, outside of some recognizable names and references. In the above example,
Blas structures a Butlerian concept of iteration and power through the program-
matic statement “destabilizationLoop(),” and a play on speech act theory with a
series of “executable speech acts” (such as “iDo()” and “exe()”). transCoder, as an
SDK, does not provide a series of code statements that represent the procedures
underlying the command “destabilizationLoop().” Instead, the user is given a
short description on how “destabilizationLoop()” should be used. Or, it tells the
user what it does, and not how it does it. “destabilizationLoop()” “breaks apart
any process that acts as a continuously iterating power,” which implies Butler’s
assertion that gender and sex are products of regulatory regimes but, through
changes during the iteration of such regulative norms (or loops), resistance to
such regimes can emerge.22 The ambiguity of meaning, however, emerges from
transCoder because meaning is only “implied,” because there is no actual code,
only the promise of code functionality, because the underlying complexity has

Figure 4

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

14  (  Gerald Stephen Jackson

already been abstracted from the user. transCoder doesn’t define an operation,
but the potential foundation for the building of operations, a syntax for further
operational complexity, out of the interface of promised functionality. So rather
than see the work of code as the process of negotiating meaning between a mind
and a machine, between language and hardware, we instead see a performativity
of code through logical structure.

Calling back to Slash Goggles, Russo utilizes “destabilizationLoop()” in a program-
matic construct meant to control the flow of a program through decision making:

If (destabilizationLoop(‘image’)){
$desire = array(mutMutate(‘identity’, ‘gender’));

}

Because “destabilizationLoop()” breaks apart any process as an iterating power,
the use of an “image” suggests the undermining of stable gender categories con-
structed through visual interpretation. This code snippet uses the “if ” statement
to check the results of “destabilizationLoop().” If it returns a “true,” which seems to
occur if the loop actually disrupts the iterating power of the image, then the
variable “$desire” gains a series of values resultant from the “mutMutate(‘iden-
tity’, ‘gender’);” statement. “mutMutate()” can “connect any number of items to
generate hybrid functions, operators, variables, etc.,” and because of this, once
the iterating power of “image” is broken, then “$desire” contains the possible
hybrid connections of identity and gender. All of the operations described above
are rendered meaningful through the framework of transCoder, in that the use of
transCoder’s code calls upon a preexisting coding context. The fact that we know
nothing about how “destabilizationLoop()” actually breaks an iterating power
demonstrates how my reading can extrapolate meaning from Slash Goggles, and
how something as seemingly ambiguous as “destabilizationLoop()” still per-
forms within the context of computer code. There is no necessary revelation of
transCoder’s “code,” but only the performative structure that transCoder creates.

Also note here a few additional lines from transCoder’s libraries.txt. file:

schizoA()
Replicates exponentially and erratically

buggery()
acts upon a function or data set and generates an array of monstrous

non-logic mutations.23

Both of these functions are found in Slash Goggles. Russo, using the “schizoA()”
and “buggery()” functions, fills in some gaps as to how each functions works

Transcoding Sexuality )  15

(e.g., variables, input) by deploying them in a particular way (allocating value,
passing variables as input), but their place within a program is articulated
through transCoder. When Slash Goggles calls “‘metatext’ => buggery(‘queer,’
vBody());” as a command, we may now infer from the documentation that the
quality “metatext” takes as its value the result of the “buggery()” function when
given the inputs “queer” and the result of another function, “vBody()” (which
“detonates a time bomb of radical impurity”).24 The result is that “metatext”
will contain some value gained through the process of generating nonlogics
of identitarian nonpurity related to queer sexuality, which will then become
part of a data structure used to understand sexuality—in this case, the object
“$humanform.” The movement of structure, meaning, and subject articulation
is a product of the citation and reiteration of norms laid out in the library.
However, unlike a natural language, the abstraction of complexity, and not the
language itself, that serves as the performative engine.

As Chun writes, scholars may fetishize their analyses of source code as the
central artifact of meaning, one with a relatively transparent relationship to
the underlying machine.25 Coding qua writing thus becomes a translatable
practice between the goals of machine execution and audience persua-
sion. Although this may not be untrue—in that coding is, in this paradigm,
writing—it places the impetus of the practice of coding within a realm of what
we would traditionally describe as writing in a professional setting or a class-
room: through audiences, intentions, and shared language as a directed activity
between writing subject and technology. Abstraction problematizes this while
at the same time iterating social norms, including sexuality and gender, because
abstraction illustrates code as a logical interface between contexts of complexity.
These interfaces are code libraries, like transCoder: they simplify the use of
complex code so that programmers can build more complex structures. Chun
writes that “abstraction both empowers the programmer and insists on his/her
ignorance . . . abstraction gives programmers new creative abilities.”26 The work
of a programmer is therefore mediated through a series of logical translations
across digital media, and this mediation is more or less hidden from the pro-
grammer at the site of the production of code. Abstraction through interfaces
between contexts of complexity produce programming subject positions and
articulates a power structure iterating a particular norm of software production.
TransCoder and Slash Goggles inject queer sexual identification into the perfor-
mative mechanism to circulate queer identities and world making practices into
code itself. Such an injection produces productive discursive strategies for digital
rhetoric and queer critique of code.

16  (  Gerald Stephen Jackson

)))   The Queer Performativity of Code and Subverting
Mastery

What becomes evident here is that the productive mechanism of computational
performativity is no more determined by rote and determined technology than
gender by rote and determined biology. In regards to gender performativity,
Kendell Gerdes writes that, “the subject of gender is not in charge, but exposed,
addressed by the performative power of essentialist understanding of gender
rather than the addresser of it . . . the performative power of gender is its cease-
less materialization of gender,” and I would argue that in computational perfor-
mativity, the same could be said about the subject of technology.27 In this sense,
not only are there constraints to performativity but rather, “constraint calls to be
rethought as the very condition of performativity.”28 The subject of computation
is addressed by the performative power of code through a continual reference to
something else—some structure, some language, some order, that it manifests
through. There is no stable “machinic subject” in place as we perform identities
in online social networks, through medical databases, and so on. There is only
the constant production of those subjectivities, and their transformation across
various performative machines. In this way, it avoids the presumption of a meta-
physics of the subject where there is a “stable gender in place and intact prior to
the expressions and activities that we understand as gendered expressions and
activities.”29

From this, a compelling overlap between computational and gender per-
formativities emerges. Both Chun and Mackenzie draw from Butler to argue
towards a performativity of code. Both, however, do so more focused on the per-
formativity rather than the gender. If computational performativity is the cita-
tion and iteration of complexity across different programming contexts, then I
argue that a masculine epistemology of mastery is structurally embedded within
code. Drawing from Chun’s account of the history of the ENIAC girls, a paral-
lel, gendered rhetoric of mastery with computational performativity shows how
subjects are formed in programming and software. Leveraging a discourse of
mastery within software development links code to what J. Jack Halberstam
calls “queer art of failure,” a resistance to the determined and correct (master-
ful) narratives of computer programming. Slash Goggles, as an articulation of
transCoder’s logic, therefore suggests that its proceduralizing of sexual identifica-
tion is also an articulation and critique of mastery as an epistemology.

According to Chun, the earliest days of contemporary programming involved
a large, room-sized computer, the Electronic Numerical Integrator and Com-
puter (ENIAC), a military project developed to help calculate artillery tables

Transcoding Sexuality )  17

and formulas related to the development of thermonuclear weapons during
World War II. Built in the electrical engineering department of Pennsylvania
State University, the computer did not use software. In fact, there was no such
thing as software. Instead, ENIAC programming was the direct, physical pro-
gramming of the wires, switches, and other components of the machine itself.
There was no “code” distinct from the bare metal of the technology itself. The
“computers” were a group of women known as the “ENIAC girls,” female engi-
neers who operated the machine directly. These women understood the hard-
ware of the ENIAC and how to instantiate solutions to problems given to them
by (male) mathematicians and scientists in processes that could take days or
weeks. The objectification of these women under a normative understanding
of knowledge and discipline continued through their orientation as exten-
sions of that machine. The kind of machine work the ENIAC girls performed
was seen as, itself, rote and mechanical rather than creative of intellectual, and
such work was often seen as mindless, unskilled, or “clerical.” However, after the
invention of “software” and code as we know them today, there was an epistemo-
logical collapse of the work of programming and of problem posing and solving,
and the image of the lone, brilliant computer programmer came into existence.
Chun writes that “programming became programming and software became
software when command shifted from commanding a ‘girl’ to commanding
a machine,” and following this the model constructed around “commanding a
girl” became a foundation for machine control as well.30 As it became abun-
dantly clear that programming itself was a skill worth studying, and as men
began to apply scientific epistemologies to describe software and programming
as practices, then the programmer became a figure of knowledge, expertise, and
mastery. No more a cleric of repetitious activities, the programmer was a priest
of a “black art,” as John Backus famously described, in which experts handled
the arcane through self-driven brilliance and know-how.31 Nathan Ensmenger
argues that programming therefore became masculine when it moved toward
categorization as the individual practice of the intellectual “artisan” or the rig-
orous “scientist.”32

It is here, in the mistaken assumption that commands may translate directly
into machinic code, that the gendered notion of mastery articulates as abstrac-
tion and computational performativity. The erasure of complexity is productive
in that, in order to produce the conditions of a mastering discursive subject, it
erases the invisible and collaborative labor of encoding, translation, and auto-
mation in software. Mastery, in this case, is rendered masculine because of its
historical nature and because of its epistemological assumptions—the produc-
tivity of individual realization through erasure of shared labor. Mastery is the
erasure of the intermediary, the investment of creative and productive authority

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

18  (  Gerald Stephen Jackson

in the articulated individual of code. Abstraction as a technique does ease devel-
opment for programmers, constructing that discursive subject of mastery, but
does so through a willful erasure of the limits and debts of such mastery. Chun
notes that “the handing over of power that has been hidden by programming
languages that obscure the machine and highlight programming” situates a
“master” as an individual, a master not just of the technology but of the episte-
mology of that technology. The narrative of mastery is predicated on the strate-
gic abstraction of information to constitute agency within another context. In
this case, is constitutes a position of agency in which a system (the programming
language) is mastered.

Blas argues that transCoder “disidentifies” with technology in that it intro-
duces queer critical theory into a seemingly nonqueer space, modifying the cir-
culation of information and identity.33 Textually, procedurally, it does just this,
and in a way that is seemingly apparent to a more general (i.e., nontechnical)
audience. Disidentification, however, is a performative act that signals a rela-
tionship between an other-ed practice and the larger social logics that marginal-
ize it. For transCoder to disidentify means that transCoder

scrambles and reconstructs the encoded message of a cultural text in a fashion that
both exposes the encoded message’s universalizing and exclusionary machinations
and re-circuits its workings to account for, include, and empower minority identi-
ties and identifications. Thus, disidentification is a step further than cracking open
the code of the majority; it proceeds to use this code as raw material for represent-
ing a disempowered politics or positionality that has been rendered unthinkable by
the dominant culture.34

The inclusion of queer theory as a base for the syntax of transCoder signals a
complementary rhetorical efficacy rooted in the relationship of the language and
its larger, technical–performative context. By utilizing abstraction (and software
engineering more broadly) itself as a tactic, rather than as a bracketed epistemol-
ogy, both introduce into the mastered (or “master-able”) space of software the
circular, problematic nature of sexual identification, which further, as a perfor-
mative result, raises and owns the potential and necessity of the failure of that
mastery. For Halberstam, failure is located within hegemonic systems of norma-
tivity avenues of identification and subversion.35 In an arena like computer pro-
gramming, incorrectness or failed code is seen as doomed from the get go—it
simply crashes and burns. But if failure is a productive performance through
contexts of complexity, rather than in the tight confines of the execution of an
algorithm, then failure as a practice can encompass a wider critique of masculine
culture in programming. Accordingly, one of Halberstam’s theses of failure is
that we must “resist mastery.”36 Resisting mastery does not mean simply writing

Transcoding Sexuality )  19

failed algorithms, but writing structural critiques through performative mecha-
nisms that circulate confusion and drives code logics to illogical ends.

Resisting mastery here means resisting the disciplining urge to reproduce, to
correct, to maintain that compels code workers in corporate and academic con-
texts. Code or software as illogical seems like a contradiction, but only so when
the meaning of a given piece of code is invested in the correctness of an algo-
rithm. Bugs, memory leaks, security breaches are all results of the failure of code
that escapes correctness, because they all demonstrate the inherent fallibility
of the code that always already exists. They are the artifacts of code that escapes
its epistemological telos of mastery, which means recognizing the frayed edges
of failure that lurks in code inherently, and where this undermines and compli-
cates mastery. Take the “Hello World” example used earlier. The “printf ” state-
ment stands as the only real “command” outside of the program structure and
header. Printf literally prints a string of characters to the screen, with that string
given to the command as an argument. Because it does this, many programmers
embed printf statements into their code for debugging purposes, printing warn-
ing messages or data values in order to trace the workings of the program. The
implication for the programmer, and more often the new programmer, is that
printf will “just print” to the output screen when that line of code executes. New
programmers often find out that this is not the case, as development variables
and errors in compilation can stall out printf so that it prints at the wrong time
or not at all. That is because printf actually works through an output buffer sys-
tem, were the string of characters are placed in memory until a specific symbol
is reached (“\n”), which then “flushes” (empties) the buffer and puts the data
on screen. StackExchange user Toby Speight found this out during an entry
level C programming assignment.37 His example illustrates how failure is part
of coding. His program, which calls the printf command, only “printed” at odd
times, or not at all, and certainly not as expected. The culprit, in this case, was
in the way his development environment compiled the command and executed
it—specifically, in how it handled the buffering and flushing of the data itself. As
individuals began to offer solutions on the website, the actual underpinnings of
the simple printf command were actually incredibly complex. One user “kliteyn”
suggested that Toby try to reset the output buffer with the following command:

setvbuf (stdout, NULL, _IONBF, 0);

Although another user “Kitchi” suggested switching output buffers more gener-
ally, using the “stderr” (error) output command. Another solution suggested, and
one prominent in other areas that I have researched, is the “fflush” command,
which immediately flushes all output buffers regardless of what else is happening.

20  (  Gerald Stephen Jackson

Even simple scripts like Toby’s or the “Hello World” program are always
already built on an ocean of complex code, libraries through which data and sys-
tem states are passed, transformed, worked on, and returned. Thinking of code
through queer failure thus recognizes the avenues by which “failure” is less the
breakdown of a program or a piece of software, and more a path of subverting
or disidentifying with the disciplinary structure of programming through pro-
gramming. In the above case, it recognizes the tenuous relationship of “mastery”
in the face of such complexity, and the productive constitution of mastery as it
breaks down and reforms under a necessary admission of ignorance and need
for collaboration. Understanding a command like printf as a command for a
machine hides the machinic work that makes printf function and, at the same
time, the fluid nature in which libraries, compilation, and execution exceed and
problematize the completeness of that understanding. The abstraction of the
language, of the underlying complexity, therefore constructs a discursive sub-
ject that on the one hand can practice a supposed or assumed mastery of code
while at the same time including the necessity of collaboration, of consultation.
The parallels between the pseudocode examples of transCoder, Slash Goggles, and
“Hello World” are such that the ghosts of gendered labor and gendered iden-
tification in programming epistemologies ask for different, sometimes comple-
mentary and sometimes contradictory, approaches. Primarily, the exactness of
mastery is historically situated as masculine, practiced in code that always cites
the abstract structure of its predecessors and reiterates them.

Thus transCoder and Slash Goggles, outside of their own critique, also offer
a critical rhetorical strategy for grappling with gender, sexuality, and code by
directly injecting it into the performative apparatus of software development.
If we trace how code abstracts and separates contexts of complexity from each
other, how it functions as an epistemological performance, then the possibili-
ties for understanding software as a gendered practice are more apparent to us.
This is why Ensmenger’s claim that coding became a boy’s club is so relevant.
For Ensmenger, the building of masculine epistemologies around the practice
of code marginalized women out of the field: it required more work and more
overhead in terms of learning style. The representation of women in program-
ming has always been a problem, in particular in places where gender-neutral
narratives of achievement, merit, and expertise are stronger (many open source
development projects fall under this category).

Butler writes that it is this constitutive failure of the performative, this slip-
page between “discursive command and its appropriated effect” that “provides
the linguistic occasion and index for a consequential disobedience.”38 Or, as Sara
Ahmed argues, the demands and prohibitions “of fields or grounds for action
are generative: it is not that bodies, objects, inhabit structure, but that bodies are

Transcoding Sexuality )  21

expressed, inflected, and oriented by their grounding.”39 Blas’s move to define an
SDK that abstracts complexity pulls us away from trying to figure out the “code”
that makes it all work. This same abstraction allows the movement of meaning
by structuring the ability of programmers to build further complexity through
interfaces like an SDK. The performativity of gender and the performativity of
digital code share an important aspect: that they constitute logics of circulation,
one of gender expression, one of software and information. These logics of cir-
culation do not carry meaning but produce it, generate it and its conditions. In
networked space, this also includes how bodies are translated across grounds of
action, between and through them. These activities, epistemologies, and prac-
tices are seemingly played out in a space that should be more strictly bounded.
Computer technology, however, is not, and at some point the erasure of distinc-
tion between execution and code grounds itself in the mastery of the totality of
computation. But as Slash Goggles and transCoder show us, and as we further see
performed in “Hello World,” there is always already a break in the narrative of
mastery: the computer evades us as it pulls from and escapes into culture, labor,
and history.

)))   Conclusion

Practices of coding are not represented strictly in terms of words, statements,
or commands, but in a structural relationship between these commands and a
space of intelligibility that the programmer works in, which is turn constructed
through a series of translations and transpositions across differing compu-
tational contexts. It is perhaps unsurprising, then, that the question of how
gender functions as a discourse within technology is further complicated with
questions about how gendered practices materialize in computer code through
different contexts. If gendered practices exist at the level of code structure, and
not just in the text of a program itself, then code as a discourse relies on struc-
tural relationships that are unique to code, that only partially resemble language.
If we choose to bracket certain technological questions such as the structure of
code as a practice of building software, it may lead us to miss important real-
izations about that technology. In an interview with Rhizome, Blas stated that
the work of the Queer Technologies project (of which transCoder is a part) is to
explore a “viral” aesthetics. For Blas, “by making and mass-producing ‘products,’
Queer Technologies is able to exist in a variety of contexts without necessar-
ily being identified as an art object. . . . They are all designed to be collective
engagements, to be collectively experimented with.”40 Furthermore, such exper-
iments can help us examine how “heterosexual mathematicians and scientists

[1
42

.1
50

.1
90

.3
9]

P

ro
je

ct
 M

U
S

E
 (

20
25

-0
8-

12
 1

5:
49

 G
M

T
)

 U
ni

ve
rs

ity
 o

f T
or

on
to

 L
ib

ra
ry

22  (  Gerald Stephen Jackson

create models and technologies that are infused with heterosexuality,” and how
“homosexual desires can inform and help to materially construct the technicity
of objects.”41 Blas demonstrates the necessary transcontextuality of transCoder
and the fluid nature of its subject matter not only to express gender critique,
but to structure platforms for a dynamic critique of computation and sexuality.
Even though sexuality and computation seem like disparate topics, Blas looks
under the sociocultural manifestations of computer programming, computer
culture, and gender to comment on the epistemological practices of computer
programming, which are themselves structured by modes of being that include
gendered and sexed practices of communicating and producing knowledge.
Slash Goggles inhabits this space in order to proceduralize sexual identification,
exposing the ways in which one is not without the other, if we care to trace
the performance of gender—and other categories—systemically across digital
media. Through a conglomeration of rhetorical code practices and performative
investigations, scholars will begin to see how seemingly disparate texts, materials,
or technologies actually co-constitute one another. The critical is more than ever
experimental, in the place where experimentation seems the most constrained.

I have argued that computational performativity is gender performativity
when viewed through technical and historical contexts of labor and collabo-
ration in technical fields like computer programming. Both Russo and Blas
respond to the rhetoric of software engineering, the how of code circulation and
performance, to comment on topics of gender construction, sexual identity,
and how both play out in digital technology. But, as I have argued, this critique
expands into a queer technique of rhetorical engagement with code that recog-
nizes how structure, form, data, and complexity shape and constrain discursive
positions in coding as a discipline. Computational performativity, in the man-
ner I have discussed, offers the potential to look for gendered practices across
computer code—not as representations of gender through discourse, but as the
ordering of media and media consumption as gendered to produce discourse.
Although I believe there are numerous implications for the application of such
analysis, the primary vision of this argument is to offer an approach that recog-
nizes code as epistemology, epistemology as gendered and performative, and as
such the potential to see a continuum of gendered practices across software and
its use. Such a vantage, I believe, offers two immediate benefits.

First, scholars of a critically queer code studies can develop a body of work
that explores the relationships between gender representations in STEM indus-
tries and academia through software—its production, maintenance, and circu-
lation. Because performativity, computational and gendered, is the continued
creation of new worlds, a focus on the queering of software at its own game
is a critical imperative. Second, as studies in the fields of computer science,

Transcoding Sexuality )  23

computer engineering, and electrical engineering have already begun to note
the skewed representation of cis-gendered masculinity in programming, a pro-
ductive interdisciplinary framework between STEM fields and studies in queer
sexualities can emerge from a shared critical discourse. An increasing number
of studies from the fields of computer science and software engineering point
towards gender and racial disparities, not just evident in hiring patterns but in
how these fields unknowingly invite or exclude certain individuals through their
cultural assumptions and teaching and working practices.42 Although questions
of literacy, education, and social attitudes towards gender and engineering all
play into these conversations, critical gender scholars can collaborate with these
fields to further investigate how these social realities are present and productive
in software. Collaboration in this key stands not only as a corrective measure,
but as a way to inform how computer scientists produce software, digital subjec-
tivities, and with them our contemporary culture.

notes

	 1.	Wendy Chun, Programmed Visions: Software and Memory (Cambridge, MA: MIT
Press, 2011), 31.

	 2.	The six original ENIAC programmers were Kathleen McNulty, Betty Snyder, Betty
Jennings, Marlyn Wescoff, Frances Bilas, and Ruth Lichterman. See W. Barkley
Fritz, “The Women of ENIAC,” IEEE Annals of the History of Computing 18, no. 3
(1996): 15.

	 3.	Judith Butler, Excitable Speech: A Politics of the Performative (New York: Routledge,
1997), 28.

	 4.	N. Katherine Hayles, My Mother Was a Computer: Digital Subjects and Literary Texts
(Chicago: University of Chicago Press, 2005), 54.

	 5.	Ibid., 52.
	 6.	Robert E. Cummings, “Coding with Power: Towards a Rhetoric of Computer Cod-

ing and Composition,” Computers and Composition 23 (2006): 430–443.
	 7.	Mark Marino, “Critical Code Studies,” Electronic Book Review (Winter 2006),

http://​www​.electronicbookreview​.com/​thread/​electropoetics/​codology.
	 8.	Ian Bogost, Persuasive Games: The Expressive Power of Video Games (Cambridge,

MA: MIT Press, 2007), 29; Kevin Brock, “One Hundred Thousand Billion Pro-
cesses: Oulipian Computation and the Composition of Digital Cybertexts,” Techno-
culture: An Online Journal of Technology and Society 2 (2012), https://​tcjournal​.org/​
drupal/​vol2/​brock.

	 9.	Judith Butler, Bodies that Matter: On the Discursive Limits of “Sex” (New York: Rout-
ledge, 1993), xii.

	 10.	Hayles, My Mother Was a Computer, 48.

24  (  Gerald Stephen Jackson

	 11.	Julie Levin Russo, “About,” The Archive, http://​thearchive2​.livejournal​.com/​profile
(accessed February 25, 2016).

	 12.	Julie Levin Russo, “Visual Informatics: The Slash Goggles Algorithm,” April 10,
2008, accessed March 1, 2017, http://​thearchive2​.livejournal​.com/​1465​.html.

	 13.	Eve Kosofsky Sedgwick, The Epistemology of the Closet (Berkeley and Los Angeles:
University of California Press, 1990), 4.

	 14.	Erin C. Davis, “Situating ‘Fluidity’: (Trans)Gender Identification and the Regu-
lation on Gender Diversity,” GLQ: A Journal of Lesbian and Gay Studies 15, no. 1
(2008): 98–100.

	 15.	Wendy Chun, “On ‘Sourcery,’ or Code as Fetish,” Configurations 16, no. 3 (2008):
303.

	 16.	Ibid., 309.
	 17.	Adrian Mackenzie, “The Performativity of Code: Software and Cultures of Circula-

tion,” Theory, Culture, and Society 22, no. 1 (2005): 73.
	 18.	Ibid.
	 19.	Judith Butler, Gender Trouble: Feminism and the Subversion of Identity (New York:

Routledge, 1990), 133.
	 20.	Mackenzie, “The Performativity of Code,” 76.
	 21.	Mark Marino, “Of Sex, Cylons, and Worms: A Critical Code Study of Heteronor-

mativity,” Leonardo Electronic Almanac 17, no. 2 (2012): 189.
	 22.	Butler, Gender Trouble, 130.
	 23.	Zach Blas, “libraries.txt,” Queer Technologies (2012), http://​www​.zachblas​.info/​

projects/​queer​-technologies (accessed December 5, 2015).
	 24.	Ibid.
	 25.	Chun, Programmed Visions, 29.
	 26.	Wendy Chun, “On Software, or the Persistence of Visual Knowledge,” Grey Room

18 (2004): 38.
	 27.	Kendall Gerdes, “Performativity,” TSQ 1, nos. 1–2 (2008): 148.
	 28.	Butler, Bodies that Matter, 59.
	 29.	Judith Butler, “Performative Agency,” Journal of Cultural Economy 3, no. 2 (2010):

147.
	 30.	Ibid., 29.
	 31.	Richard Wexlblat, ed., History of Programming Languages (New York: Academic

Press, 1981): 69.
	 32.	Nathan Ensmenger, “Making Programming Masculine,” in Gender Codes: Why

Women are Leaving Computing, ed. Thomas J. Misa (Hoboken, NJ: Wiley, 2010),
130.

	 33.	Blas, “introduction.txt,” Queer Technologies (2012).
	 34.	José Esteban Muñoz, Disidentifications: Queers of Color and the Performance of Poli-

tics (Minneapolis: University of Minnesota Press, 1999), 31.
	 35.	J. Jack Halberstam, The Queer Art of Failure (Durham, NC: Duke University Press,

2011), 89.
	 36.	Ibid., 11.

Transcoding Sexuality )  25

	 37.	See the entire discussion thread at http://​stackoverflow​.com/​questions/​13035075/​
printf​-not​-printing​-on​-console. StackExchange is a forum through which users
may ask questions, usually technical in nature, and have them answered by oth-
ers. It works through a karma system where successful or useful answers are given
votes, whereas unhelpful answers or repetitive questions are, by the rules of the site,
ignored or rerouted.

	 38.	Butler, Bodies that Matter, 82.
	 39.	Sara Ahmed, “Orientations: Towards a Queer Phenomenology,” GLQ: A Journal of

Lesbian and Gay Studies 12, no. 4 (2006): 558.
	40.	Jacob Gaboury, “Interview with Zach Blas,” Rhizome (August 2010), accessed

April 16, 2017, https://​rhizome​.org/​editorial/​2010/​aug/​18/​interview​-with​-zach​-blas.
	 41.	Zach Blas and Micha Cárdenas, “Imaginary Computational Systems: Queer Tech-

nologies and Transreal Aesthetics,” AI and Society 28, no. 4 (2013): 561.
	 42.	Although there are hundreds of studies and editorials on the topic of gender and

technology, see Jennifer Tsan, Kristy Elizabeth Boyer, and Collin F. Lynch, “How
Early Does the CS Gender Gap Emerge? A Study of Collaborative Problem Solving
in 5th Grade Computer Science,” SIGCSE ’16, Memphis, TN (2016), 388–93; Fiona
McNair, “The Womanly Art of Programming,” Horizons 13, no. 3 (1999): 7–10;
Claudia Herbst, “Then and Now: Gender, Code, and Literacy,” Social Semiotics 14,
no. 3 (2004): 335–48; Janet Carter and Tony Jenkins, “Gender and Programming:
What’s Going On?,” ITiCSE ’99 (July 1999): 1–4; Carter and Jenkins, “Gender Dif-
ferences in Programming?,” ITiCSE ’02 (June 2002): 188–92; and Ronald Dattero
and Stuart D. Galup, “Programming Languages and Gender,” Communications of
the ACM 47, no. 1 (2004): 99–102.

)))
Gerald Stephen Jackson is a PhD Candidate at the University of South Car-
olina. He investigates the intersections of gender, technical communication,
and software development through the lenses of queer theory and critical code
studies. His work appears in Computers and Composition, JOGLTEP: Journal
of Global Literacies, Technologies, and Emerging Pedagogies, and the upcoming
collection Rhetoric, Writing, and Circulation from Utah State University Press.

